
Verifying SCR Requirements Speci�cations

Using State Exploration�
In Proc. First ACM SIGPLAN Workshop on Automatic Analysis of Software, Jan 1997

Ramesh Bharadwaj and Constance Heitmeyer
Center for High Assurance Computer Systems (Code 5546)

Naval Research Laboratory
Washington, DC 20375

framesh,heitmeyerg@itd.nrl.navy.mil

Abstract

Researchers at the Naval Research Laboratory

(NRL) have been developing a formal method, known

as the SCR (Software Cost Reduction) method, to

specify the requirements of software systems using ta-

bles. NRL has developed a formal state machine model

de�ning the SCR semantics and support tools for anal-

ysis and validation. Recently, a veri�cation capability

was added to the SCR toolset. Users can now invoke

the Spin model checker within the toolset to establish

properties of a speci�cation. This paper describes the

results of our initial experiments to verify properties of

SCR requirements speci�cations using Spin. After re-

viewing the SCR requirements method and introducing

our formal requirements model, we describe how SCR

speci�cations can be translated into an imperative pro-

gramming notation. We also describe how we limit

state explosion by verifying abstractions of the origi-

nal requirements speci�cation. These abstractions are

derived using the formula to be veri�ed and special at-

tributes of SCR speci�cations. The paper concludes

with the results of our experiments with Spin and a

discussion of ongoing and future work.

1 Introduction

For a number of years, researchers at the Naval Re-
search Laboratory (NRL) have been developing a for-
mal method based on tables to specify the require-
ments of software systems [AF+92, Hen80]. The
method, known as the Software Cost Reduction (SCR)
method, was originally formulated to document the re-
quirements of the Operational Flight Program (OFP)
for the U.S. Navy's A-7 aircraft. Since SCR's introduc-
tion more than a decade ago, many industrial organi-
zations, including Lockheed, Grumman, and Ontario

�This work was supported by the O�ce of Naval Research.

Hydro, have used the SCR method to specify require-
ments.

NRL has developed both a formal state machine
model to de�ne the SCR semantics [HJL96b, HJL96a,
HLK95] and a set of software tools to support analy-
sis and validation of SCR requirements speci�cations
[H+95, HJL96a]. The toolset supports creation and
editing of an SCR requirements speci�cation, con-
sistency and completeness checking, and simulation.
Recently, we added a veri�cation capability to the
toolset. After using the tools to develop and re�ne
a formal requirements speci�cation, a speci�er can
now invoke the Spin model checker [Hol91] within the
toolset to verify properties of the speci�cation.

For several years, formal veri�cation of programs
has been an active area of research [Flo67, CM88,
MP91a, MP91b]. Recently, model checking has
emerged as a practical method for verifying �nite-
state system descriptions, in particular, descriptions
of hardware and communications protocols [CES86,
Hol91, Kur89, McM93]. An early e�ort to apply
model checking to requirements speci�cations was re-

ported in 1993 by Atlee and Gannon, who used the
model checker MCB [CES86] to analyze properties
of individual mode transition tables taken from SCR
speci�cations [AG93]. More recently, Sreemani and
Atlee [SA96] used the symbolic model checker SMV
[McM93] to verify that the mode transition tables in
the original A-7 requirements document satis�ed as-
sertions about combinations of modes. The latter ex-
periment demonstrates that model checking can be
used to analyze moderately large requirements speci-
�cations.

A major goal of our work is to generalize some as-
pects of the earlier work on verifying requirements
speci�cations. While the work by Atlee et al. veri-
�ed properties of mode transition tables with boolean
input variables, the approach we describe may be used

to verify properties of a complete SCR speci�cation.
Further, we allow variables to range over arbitrary (�-
nite) domains such as integer subranges and enumer-
ated values.

Another goal of our work is to describe formally the
relationship between a requirements speci�cation and
the abstract models we verify. Our approach starts
with a requirements speci�cation, a black box descrip-
tion of all acceptable system implementations [HM83].
Because existing veri�cation methods do not scale well
for such descriptions (they are too detailed), we verify
properties of more abstract models. Others have also
taken this approach. For example, Atlee et al. analyze
abstract models, and recently Butler has used PVS
[ORS92] to analyze abstractions of SCR-like system
models [But96]. However, the correspondence between
these abstract models and the requirements speci�ca-
tion is informal { the correctness of the abstraction is
based on arguments that appeal to intuition. In con-
trast, our approach is based on principles that allow
us to derive the abstract models, either automatically
or under user guidance, from the requirements speci-
�cation within a formal framework.

This paper describes the results of our initial experi-
ments to verify properties of SCR requirements speci�-
cations using the Spin model checker. After reviewing
the SCR approach to requirements speci�cations and
introducing our formal requirements model, the pa-
per describes how SCR speci�cations can be translated
into an imperative programming notation. The paper
also describes how we limit state explosion by veri-
fying an abstract model of the original requirements
speci�cation. Such abstractions can be derived using
the formula to be veri�ed and the special attributes
of SCR speci�cations. The paper concludes by pre-
senting the results of our experiments with Spin and
a discussion of ongoing and future work.

2 Background

2.1 SCR Requirements Speci�cations

In SCR, the required system behavior is described
by REQ, the required relation between monitored vari-

ables, environmental quantities that the system mon-
itors, and controlled variables, environmental quanti-
ties that the system controls [PM95]. To specify this
relation concisely, the SCR approach uses four con-
structs { modes, terms, conditions, and events. A
mode class is a variable whose values are system modes

(or simplymodes), while a term is any function of mon-
itored variables, modes, or other terms. A condition

Old Mode Event New Mode

TooLow @T(WaterPres � Low) Permitted

Permitted @T(WaterPres � Permit) High

Permitted @T(WaterPres < Low) TooLow

High @T(WaterPres < Permit) Permitted

Table 1: Mode Transition Table for Pressure.

is a predicate de�ned on one or more system entities
(an entity is a monitored or controlled variable, mode
class, or term). An event occurs when the value of any
system entity changes. The notation \@T(c) WHEN d"
denotes a conditioned event, de�ned as

@T(c) WHEN d
def
= :c^ c0 ^ d;

where the unprimed condition c is evaluated in the
\old" state, and the primed condition c0 is evaluated
in the \new" state. The environment may change a
monitored quantity, causing an input event. In re-
sponse, the system changes controlled quantities and
updates terms and mode classes.

To introduce the SCR constructs, we consider a
simpli�ed version of a control system for safety injec-
tion [CP93]. The system monitors water pressure and
injects coolant into the reactor core when the pres-
sure falls below some threshold. The system operator
may block this process by pressing a \Block" switch.
The system is reset by a \Reset" switch. To spec-
ify the requirements of the control system, we use the
monitored variables WaterPres, Block, and Reset to
denote monitored quantities, and a controlled variable
SafetyInjection to denote the controlled quantity.
The speci�cation includes a mode class Pressure, a
term Overridden, and several conditions and events.

The mode class Pressure, an abstract model of
WaterPres, has three modes: TooLow, Permitted, and
High. At any given time, the system must be in one
and only one of these modes. A drop in water pressure
below a constant Low causes the system to enter mode
TooLow; an increase in pressure above a larger con-
stant Permit causes the system to enter mode High.
Table 1 is a mode transition table which speci�es the
mode class Pressure.

The term Overridden is true if safety injection is
blocked, and false otherwise. Table 2 is an event ta-
ble which speci�es the behavior of Overridden. The
expression \@T(Inmode)" in a row of an event table
denotes the event \system enters the corresponding
mode". For instance, the entry in the �rst row of
Table 2 speci�es the event \the system enters mode
High".

Table 3 is a condition table that speci�es the
controlled quantity SafetyInjection. The table

Mode Events

High False @T(Inmode)

TooLow, @T(Block=On) @T(Inmode) OR

Permitted WHEN Reset=O� @T(Reset=On)

Overridden True False

Table 2: Event Table for Overridden.

states that \If Pressure is High or Permitted or if
Pressure is TooLow and Overridden is true, then
SafetyInjection is Off; otherwise, it is On".

Mode Conditions

High, Permitted True False

TooLow Overridden NOT Overridden

Safety Injection O� On

Table 3: Condition Table for Safety Injection.

2.2 Semantics of SCR Speci�cations

The following is an informal introduction to the
SCR formal model. For a formal treatment, see
[HJL96b].

The model, which describes the system being spec-
i�ed as a �nite state machine, includes a set RF =
fr1; r2; : : : ; rng of entities and a special function TY
which maps each entity to its legal values. In the
model, a state s is represented as a function that maps
each entity in RF to its value in s.

Our formal model describes a state machine � as a
4-tuple, � = (S; s0; E

m; T), where S is a set of states,
s0 2 S is the initial state,1 Em is the set of input
events, and T is the transform describing the allowed
state transitions. In the initial version of our formal
model, the transform T is deterministic. That is, T
is a function that maps an input event and the cur-
rent state to a new state. The system begins in state
s0. When an input event signals a change in a mon-
itored quantity, the transform T speci�es the value
of each controlled variable, term, and mode class in
the new state. The transform T is the composition of
smaller functions, called table functions. These table
functions are derived from the SCR tables that de-
�ne the controlled variables, terms, and mode classes.
Our formal model requires that each condition, event,
and mode transition table satis�es certain properties.
These properties guarantee that each table function is
a total function.

1To simplify the examples in this paper, we assume a unique
initial state. The formal model described in [HJL96b] allows
the initial state to have more than a single value.

To compute an entity's value in the new state, the
transform T may use the values of entities in both the
old state and the new state. To describe the entities
on which a given entity \directly depends" in the new
state, we de�ne dependency relations Dnew, Dold , and
D on RF�RF. For entities ri and rj, the pair (ri; rj) 2
Dnew i� r0j is a parameter of the function de�ning r0i;
the pair (ri; rj) 2 Dold i� rj is a parameter of the
function de�ning r0i; and D = Dnew [Dold. To avoid
circular de�nitions, we require D+

new, the transitive
closure of the Dnew relation, to de�ne a partial order.

The assumptions that the table functions are total
and that the entities in RF are partially ordered guar-
antee that the transform T is a function (at most one
new system state is de�ned) and complete (for each
enabled input event, at least one new system state is
completely de�ned).

To illustrate the formal model, we reconsider
the control system for safety injection described
above. In this system, the set of entity names
RF contains the three monitored variables Block,
Reset, and WaterPres, the mode class Pressure,
the term Overridden, and the controlled variable
SafetyInjection. The type de�nitions are

TY(Block) = fOn; Offg

TY(Reset) = fOn; Offg

TY(SafetyInjection) = fOn; Offg

TY(Pressure) = fTooLow, Permitted, Highg

TY(Overridden) = ftrue, falseg

The new state dependency relation Dnew for safety
injection system is

f(SafetyInjection;Pressure);

(SafetyInjection;Overridden);

(Pressure;WaterPres); (Overridden;Pressure);

(Overridden; Block); (Overridden;Reset)g:

By applying the de�nitions in [HJL96b] to the above
tables, we derive the following table functions for the
mode class Pressure, the term Overridden, and the
controlled variable SafetyInjection:

Pressure0 =8>>>>>>>>>>><
>>>>>>>>>>>:

TooLow if Pressure= Permitted ^

WaterPres0 < Low ^ WaterPres 6< Low

High if Pressure= Permitted ^

WaterPres0 � Permit^ WaterPres 6� Permit

Permitted if (Pressure= TooLow^ WaterPres0 � Low^

WaterPres 6� Low)_ (Pressure= High^

WaterPres0 < Permit^ WaterPres 6< Permit)

Pressure otherwise:

Overridden
0 =8>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

true if (Pressure= TooLow ^ Block0 = On^

Block= Off ^ Reset= Off)_
(Pressure= Permitted ^ Block0 = On^

Block= Off ^ Reset= Off)

false if (Pressure= TooLow ^ Reset0 = On^

Reset= Off)_
(Pressure= Permitted ^ Reset0 = On^

Reset= Off)_
(Pressure0=High ^ Pressure 6=High)_
(Pressure0=TooLow^ Pressure 6=TooLow)_
(Pressure0 = Permitted ^

Pressure 6= Permitted)

Overridden otherwise:

SafetyInjection=(
Off if Pressure=High _ Pressure=Permitted _

(Pressure= TooLow ^ Overridden= true)
On if Pressure= TooLow ^ Overridden= false

The system behavior described by our model has a
nondeterministic part and a deterministic part. While
the transform T is deterministic, the input events,
which are produced by the environment, are nonde-
terministic. The monitored variables involved in the
input events may each be represented as simple �nite
state machines with an initial state, a set of possible
states, and a next-state relation. For example, the
monitored variables Block and Reset in the example
both have Off as their initial state, the set fOff, Ong
as their possible states, and the set f(Off, On), (On,
Off)g as the next-state relation. One possible model
for the monitored variable WaterPres has an initial
state of 14, possible states of f0; 1; 2; : : :; 2000g, and
a next-state relation which only allows WaterPres to
change by 10 units from one state to the next, i.e.,

f (x; x
0

) j 1 � jx
0

� xj � 10; 0 � x � 2000; 0 � x
0

� 2000g:

An important assumption of our model, the One In-
put Assumption, states that only one monitored vari-
able changes at each state transition. Using the above
models of the monitored variables, we can show that
when the sample system is in its initial state, all of the
following input events are enabled: @T(Block=On),
@T(Reset=On), and @T(WaterPres=x), where 4 �
x � 24 and x 6= 14. The One Input Assumption al-
lows only one of these input events to occur at the
next state transition.

3 Veri�cation

This section describes our use of model checking,
based on state exploration methods, to perform veri-
�cation. By veri�cation, we mean the process of es-
tablishing logical properties of an SCR speci�cation.

We specify the properties as logical formulae. In this
paper, we focus on a class of properties known as state
invariants, which assert the truth of a predicate for-
mula in all reachable states of a system. In the fol-
lowing, we assume that a given SCR speci�cation sat-
is�es application-independent properties { that is, the
speci�cation is type correct, the table functions de-
rived from the speci�cation are total functions, etc.
Such properties can be established using our toolset.
(For details of how these checks are carried out, see
[HJL96a].)

To demonstrate the properties we would like to es-
tablish, we consider the following properties for the
safety injection speci�cation:

1. Reset= On ^ Pressure 6= High) :Overridden

2. Reset= On ^ Pressure= TooLow)

SafetyInjection= On

3. Block= Off ^ Pressure= TooLow)

SafetyInjection= On

3.1 Establishing Invariants

To establish a formula q as an invariant of a state
machine, we need to show that q holds in every reach-
able state of the machine. We do this by starting
from the initial state and repeatedly computing the
next states until a �xpoint is reached. To compute
the possible new states given a current state, we need
representations of the transform T and of the input
events that trigger the state transitions. Recall that
the system transform T (which speci�es the new val-
ues of system entities) is deterministic, whereas the
state machines for monitored variables are nondeter-
ministic. The nondeterminism has two aspects: (a)
more than one monitored variable may change (i.e.,
is enabled) and (b) a given monitored variable may
change in more than one way.

To compute the next states, we associate with each
entity ri in RF, a conditional assignment of the form:

if

2 gi;1! ri := vi;1
2 gi;2! ri := vi;2

...
2 gi;ni

! ri := vi;ni

fi

Here, gi;1; gi;2; : : : ; gi;ni
are boolean expressions

(guards) and vi;1; vi;2; : : : ; vi;ni
are expressions that

are type compatible with entity ri. We de�ne the se-
mantics of a conditional assignment along the lines of
the enumerated assignment of UNITY [CM88] { one

assignment whose associated guard is \true" is exe-
cuted at each transition. If more than one guard is
\true", then any one of the associated assignments
is nondeterministically chosen. If no guard is \true",
the entity value is left unchanged. To represent the
functions de�ned by SCR tables, we allow the expres-
sions gi;1; gi;2; : : : ; gi;ni

and vi;1; vi;2; : : : ; vi;ni
to refer

to both \old" and \new" values of entities, provided
that the \new" references are not circular.

For the control system example, the conditional
assignment for the term Overridden is given below.
Conditional assignments for entities Pressure and
SafetyInjection can be expressed in a similar fash-
ion.

if

2 (Pressure=TooLow) AND @T(Block=On) AND

(Reset=Off) -> Overridden := true

2 (Pressure=Permitted) AND @T(Block=On) AND

(Reset=Off) -> Overridden := true

2 @T(Pressure=High)

-> Overridden := false

2 @T((Pressure=TooLow) OR (Pressure=Permitted))

-> Overridden := false

2 (Pressure=TooLow) AND @T(Reset=On)

-> Overridden := false

2 (Pressure=Permitted) AND @T(Reset=On)

-> Overridden := false

fi

The following is the conditional assignment for the
monitored variable Block. Conditional assignments
for the monitored variables WaterPres and Reset can
be expressed in a similar fashion.

if

2 (Block=Off) -> Block := On

2 (Block=On) -> Block := Off

fi

Given a current state s and the conditional assign-
ments for all monitored variables, we can determine
the set of input events that are enabled in s by evalu-
ating each guard. Each guard that evaluates to \true"
along with the associated assignment determines an
input event that is enabled in s. Because the One
Input Assumption only allows a single input event
to occur at each transition, one of the enabled input
events e is selected nondeterministically.

The selected input event e and the current state s

determine the new state s0. Because the transform T

is a function, s0 is unique. The values of the monitored
variables in the new state s0 are determined solely by

the input event e. The values of the other entities
in the new state s0 (the mode classes, the terms, and
the controlled variables) can be computed from the
conditional assignments for these entities. The par-
tial order determines the sequence in which the con-
ditional assignments are evaluated. Because a total
function de�nes the value of each mode class, term,
and controlled variable, only one guard of each condi-
tional assignment will evaluate to \true" and only one
assignment can be executed per entity.

4 State Space Reduction

Model checking may be ine�ective in practice be-
cause of state explosion. By their very nature, the
number of reachable states of practical systems is usu-
ally very large in relation to their logical representa-
tion. Therefore, most �xpoint computations fail to
terminate (by running out of memory) for realistic
speci�cations.

Several techniques are proposed in the literature for
limiting state explosion. The technique we use to con-
tain state explosion is abstraction { instead of model
checking a full SCR speci�cation, we model check a
smaller, more abstract model. To derive the abstrac-
tion, we exploit the structure of the formula and the
structure inherent in all SCR speci�cations. Below, we
state two correctness preserving reductions that derive
a more abstract model from an SCR speci�cation. We
state two general theorems and a corollary which de-
scribe the conditions under which an invariant of the
more abstract model is also an invariant of the full
SCR speci�cation.

In the theorems and corollary below, we use two
predicates to characterize the initial state s0 and the
transform T of a state machine � = (S; s0; E

m; T). To
characterize the initial state s0, we de�ne a predicate
� such that �(s) is true i� s = s0. To characterize
the allowed state transitions, we de�ne a predicate �

on pairs of states such that �(s; s0) is true i� there
exists an enabled event e 2 Em such that T (e; s) = s0.

Given two state machines and a mapping between
their states, the �rst theorem describes conditions
which guarantee that a predicate formula which holds
in a state of one machine also holds in the correspond-
ing state of the second machine. The second theorem
states conditions which guarantee that an invariant of
one machine is also an invariant for a second machine.
Finally, the corollary combines the two theorems to
give general conditions which guarantee that an in-
variant of one machine is also an invariant of a second
machine.

Theorem 4.1 Consider two �nite state machines, �
and �A, with entity sets RF and RFA, type functions

TY and TYA, and state sets S and SA between which

there is a mapping s 7! sA. Suppose (a) RFA � RF ,

(b) for all r 2 RFA : TYA(r) = TY (r), (c) s 7! sA is

a mapping such that for all r 2 RFA: sA(r) = s(r),
and (d) q is any predicate formula de�ned over RFA.

Then, if q holds for state sA, then q also holds for state

s, that is, q(sA)) q(s).

Theorem 4.2 Consider two �nite state machines, �
and �A, with state sets S and SA between which there

is a mapping s 7! sA, initial state predicates � and

�A, and next state predicates � and �A. Suppose (a)

s 7! sA is a mapping such that for all r 2 RFA:

sA(r) = s(r), (b) for all s in S: �(s)) �A(sA),
(c) for all s; s0 in S: �(s; s0)) �A(sA; s

0
A), and (d)

q is any predicate formula over RFA such that for all

sA 2 SA: q(sA)) q(s). Then, if q is an invariant of

�A, then q is also an invariant of �.

Corollary 4.3 If the hypotheses of Theorems 4.1 and

4.2 hold, then any predicate formula q over RFA that

is an invariant of �A is also an invariant of �.

Presented below are two principles we can use to de-
rive a more abstract SCR speci�cation from a full SCR
speci�cation. By applying these principles, we elimi-
nate certain entities and their associated tables from
the full SCR speci�cation. Instead of model checking
the full speci�cation of the state machine �, we model
check an abstract SCR speci�cation of state machine
�A. Because the transformations we apply to derive
the abstract machine �A satisfy the conditions in the
corollary, any invariant we prove for the abstract ma-
chine �A is also an invariant of the original state ma-
chine �.

4.1 Reduction Principle 1: Eliminate Ir-
relevant Entities

This principle uses the set of entity names which
occur in the formula being veri�ed to eliminate un-
needed entities and the tables that de�ne them from
the analysis. To apply this principle, we identify the
set O � RF of entities occurring in formula q. Then,
we let set O� be the reexive and transitive closure of
O under the dependency relation D of an SCR spec-
i�cation for state machine �. It is sound to infer the
invariance of q for � if q is an invariant of the abstract
machine �A with RFA = O� and if the system trans-
form of �A, TA, is obtained from T by deleting all
associated tables or state machines for entities in set
RF �RFA.

This reduction principle is also complete { if q is
an invariant of a �nite state machine �, and �A is an
abstract machine derived from � by the application of
this principle, then q is an invariant of �A. In other
words, we will always be able to establish an invari-
ant of � by model checking �A. Therefore, we always
apply this reduction automatically before every veri�-
cation.

For example, suppose we are establishing the invari-
ance of formula (1) for the safety injection system. We
identify the set of entities O occurring in the formula
as

O = fPressure;Overridden;Resetg:

The reexive and transitive closure of O under the
dependency relationD for safety injection is O�, which
is de�ned by

O
�

= fPressure;Overridden;Reset;Block;WaterPresg:

Applying the reduction principle, we eliminate con-
trolled variable SafetyInjection, together with its
table, for model checking property (1).

Applying this principle reduces the size of the state
space in two ways. Recall that each state s of state
machine � is a function that maps each entity in RF
to its value in s. When model checking �, we store the
values of all entities for each state s in �'s state space.
For the corresponding abstract machine �A, we are
only required to store values of entities in O� � RF
for each state sA in �A's state space, which reduces
the memory requirement for storing each state. In ad-
dition, states of � that map entities in O� to identical
values will be represented as a single state, which re-
duces the number of states in the state space.

4.2 Reduction Principle 2: Monitored
Variable Abstraction

This principle uses more abstract representations
of monitored variables for model checking. To accom-
plish this, we identify a set of entities O � RF of
the state machine � described by an SCR speci�ca-
tion. These entities may or may not occur in for-
mula q. Let set O� be the reexive and transitive
closure of O under the dependency relation D for �.
We require (a) for each entity ri 2 RF � O�, and
rj 2 O� � O: (ri; rj) 62 D, and (b) entities in O� � O
do not occur in formula q. It is su�cient to verify the
invariance of q for the abstract state machine �A with
RFA = RF � (O��O) and with the system transform
TA, which is obtained from T by deleting all associated
tables or state machines of entities in O�. By doing
this, we associate with each entity e 2 O, the \most

general" state machine2.
This principle identi�es an abstract machine whose

\monitored quantities" are entities in O. The values
of these entities in a new state may depend on the
values of other entities in the original speci�cation,
which we eliminate in the abstracted version. We
therefore allow entities in O to be modi�ed by the
(new) \environment" of the abstract machine, which
causes new \input events". It is easy to see that a
property that holds under weaker assumptions about
the abstract machine's \environment" also holds for
the original speci�cation under stronger assumptions
about the (real) environment of the system.

The root cause of state explosion when model check-
ing safety injection is monitored variable WaterPres.
We therefore wish to eliminate this monitored vari-
able. We observe that WaterPres only appears in the
table for mode class Pressure. Therefore, we let O =
fPressureg. The reexive and transitive closure of O
under the dependency relation D for safety injection
is O� = fPressure; WaterPresg. Since WaterPres

does not occur in any formula (1) to (3), nor in the
tables for entities Overridden and SafetyInjection,
we may delete WaterPres, and the table for entity
Pressure when model checking formulae (1) to (3).
By deleting the table for entity Pressure, we asso-
ciate with Pressure a state machine with initial state
TooLow, the set fTooLow, Permitted, Highg as the
possible states, and whose next state relation is the
largest binary relation on this set.

Unlike Reduction Principle 1, this principle is not
complete. This is because there are \extra" transitions
for state machine �A which generate states that are
excluded from the mapping s 7! sA. That is, the map
s 7! sA is no longer onto.

5 Using the Spin Veri�er

Spin [Hol91] is a model checker which uses state
exploration for verifying properties. Systems are de-
scribed in a language called Promela, and properties
are expressed in linear-time temporal logic [MP91b].
Spin has been used to verify communication protocols
and asynchronous hardware.

Promela, the language of Spin, is a notation
loosely based on Dijkstra's \guarded commands"
[Dij76]. Supported data types in Promela include
bool (booleans), byte (short unsigned integers), and
int (signed integers). Control statements include the
assignment statement, statement skip (which does

2A machine with states TY (e), whose transition relation is
characterized by the predicate \true".

nothing), sequential composition of statements, the
conditional statement, and the iterative statement.
The language also has an assert statement.

Translating an SCR speci�cation to Promela pro-
ceeds as follows. Because Promela does not allow ex-
pressions to refer to both \old" and \new" values of
variables, we assign two Promela variables to each en-
tity in the SCR speci�cation. We call these the \new"
and \old" variables. Further, expressions contain-
ing the event notation @T(c) must be translated into
equivalent forms involving the \old" and the "new"
variables. We translate the conditional assignment for
each table into a Promela conditional statement, which
computes the value of the \new" variable for each step.
The conditional statements are executed sequentially,
in a predetermined order that is consistent with the
partial order induced by the new state dependency re-
lation of the SCR speci�cation. After all conditional
assignments for table functions are executed, and new
values assigned to all \new" variables, all the \old"
variables are assigned their corresponding \new" val-
ues.

Further, we perform an optimization based on the
fact that the system transform of an SCR speci�ca-
tion is a function. This ensures that all conditional
statements for entities other than the monitored vari-
ables are deterministic. Therefore, once we have se-
lected an input event, we may compute the new state
in a single step. In Promela we specify this by enclos-
ing all the statements which correspond to the com-
putation of the mode variables, the terms, and the
controlled variables in a d step (deterministic step)
construct. This ensures that all intermediate states
(i.e., the states generated after each assignment to the
\new" and \old" variables) are not entered in the hash
table which stores the reachable states.

To generate Promela code corresponding to input
events, we generate a (non-deterministic) conditional
statement for each monitored variable, which assigns
any value (in the variable's domain) to the \new"
Promela variable. We \build in" the One Input As-
sumption by embedding all assignments to monitored
variables in a single (nondeterministic) conditional
statement.

Assertion checking an invariant is performed by
checking for its truth in the initial state, and in each
generated \new" state, by embedding it in a Promela

assert statement.

Appendix A presents the Promela code generated
by the SCR* toolset (edited to enhance readability)
for the safety injection example.

Speci�cation Property Reduction States Time Memory

d step RP1 RP2

SIS (2) 1:7 Million 56s 52 MBytes

SIS (2)
p

459; 084 13s 17 MBytes

SIS (2)
p

632 0s 1:2 MBytes

SIS (1)
p p

450 0s 1:2 MBytes

SIS (1)
p p p

160 0s 1:2 MBytes

Autopilot P 1 � �
Autopilot P

p p p
109; 826 3s 3:6 MBytes

Table 4: Results of Verifying SCR Speci�cations Using Spin.

5.1 A Note on Partial Order Reduction

In contrast to conventional partial order reduction
methods for combating state explosion [Val90, God90,
HP94], which compute and keep track of informa-
tion about redundant interleavings during state explo-
ration in order to avoid the exploration of redundant
interleavings, it is su�cient in our approach to eval-
uate the system transform using only one predeter-
mined interleaving that is consistent with the partial
order induced by the new state dependency relation.
This is a property common to all SCR speci�cations,
which follows from the SCR formal model. Therefore,
enabling Spin's partial order reduction algorithm will
almost never reduce the space requirement, and may
increase the time requirement for veri�cation (due to
additional overhead).

5.2 Limitations of using Spin

Declaring \old" and \new" Promela variables for
each entity of an SCR speci�cation can potentially in-
crease the state space by an exponential factor. An-
other problem we encountered was in translating coun-
terexamples generated by Spin to the format of our
toolset. This is particularly hard when we use abstrac-
tions during model checking. Generating understand-
able counterexamples is an important requirement for
our toolset. For these reasons, we concluded that one
way to seamlessly integrate model checking into the
toolset may be to implement a special purpose model
checker for SCR.

6 Results

In this section, we present the results of some of our
veri�cation experiments. To evaluate the translation
method and reduction principles outlined in this pa-
per, we have applied them to several \toy" examples,
and to a more \industrial-strength" SCR speci�cation.

For the safety injection speci�cation (SIS), we were
able to establish properties (1) and (2). We also
showed that property (3) is not an invariant of the
speci�cation. One of the major problems in using
model checking to evaluate abstract models is that
counterexamples, which are generated in terms of the
abstractions, are usually hard to interpret. We had
no di�culty in interpreting counterexamples gener-
ated for abstractions of SCR speci�cations, because
they are couched in terms of entities in the original
speci�cation. We view this as an important advan-
tage of our reduction principles.

We recently used the SCR method to produce
a black box requirements speci�cation of a simpli-
�ed mode control panel for the Boeing 737 autopi-
lot [BH96]. The veri�cation method presented in this
paper proved to be valuable in detecting and correct-
ing bugs in the autopilot speci�cation. The speci�ca-
tion is fairly large, consisting of more than a dozen
tables. More important, the speci�cation is in�nite-
state, since it contains three real-valued monitored
variables. Hence, it would have been impossible to
model check the speci�cation had we not applied our
reduction principles.

We were initially unable to model check the au-
topilot speci�cation even after we applied the reduc-
tion principles, raising questions in our minds about
their scalability. However, by model checking, we were
able to �nd a violation of the property, \The alti-

tude engage mode will be armed only when the ight-

path angle select mode is engaged" (property P in Ta-
ble 4). The generated counterexample was a sequence
of roughly half a million states. Interpreting the coun-
terexample did not turn out to be too di�cult, since
we were able to understand the counterexample merely
by examining the input event that led to the bad state.
Interestingly, the corrected speci�cation had far fewer
states and model checked without di�culty.

Table 4 presents some of our results. In Table 4,
reduction d step refers to the optimization where we

enclose all the statements corresponding to the com-
putation of the dependent variables (the mode classes,
the terms, and the controlled variables) in a Promela

d step (deterministic step) statement. Reductions
RP1 and RP2 refer to the two reduction principles.
The symbol `1' in the table means that Spin ran out
of memory before it could complete its evaluation of
the given property.

We ran these experiments on a lightly
loaded 75 MHz dual-processor SPARCstation-20 with
128MBytes of RAM. Our tool built the conditional as-
signments automatically from the SCR requirements
speci�cations. Moreover, the partial order derived by
the tool determined the sequence in which the con-
ditional assignments were executed. The reduction
principles were applied manually. The abstract mod-
els produced were then analyzed automatically by the
toolset using Spin.

7 Conclusions and Future Work

State exploration based model checking can be used
to analyze moderately large requirements speci�ca-
tions. However, because most requirements speci�-
cations are necessarily too detailed, model checking is
only feasible for abstractions of the speci�cations. In
previous approaches, the correspondence between an
abstraction and the original requirements speci�cation
has been informal { the correctness of the abstraction
was based on intuitive arguments. In this paper, we
describe a formal framework and two reduction princi-
ples for deriving an abstraction from an SCR require-
ments speci�cation and the formula to be veri�ed. The
theorems and corollary in Section 4 guarantee that an
invariant that holds for the abstraction also holds for
the full SCR speci�cation. We have applied our re-
duction principles to several \toy" examples and to
a more \industrial strength" requirements speci�ca-
tion. Our initial experiments with the state enumera-
tion tool Spin strongly suggest that our principles can
be used to combat state explosion in verifying speci�-
cations of practical systems.

In its current form, our principle for abstracting
monitored variables is incomplete, since we model
check under assumptions that are weaker than the as-
sumptions about the environment in the original spec-
i�cation. We would like to explore techniques such as
homomorphic reduction [Kur89], simulation mappings
[Lyn94], and abstract interpretation [AD90] to either
verify stronger abstractions (provided by users) or de-
rive abstractions from the requirements speci�cation.

In this paper, we perform a static optimization

based on the partial order de�ned by the dependency
relation of an SCR speci�cation. In contrast to con-
ventional partial order reduction methods, whose ben-
e�ts are diminished due to additional space and time
overhead during veri�cation, our approach has the ad-
vantage of not introducing any overhead during state
exploration.

We plan to develop tools that apply our reduction
techniques automatically. Another goal is tighter inte-
gration of counterexample generation and interpreta-
tion with existing tools (such as the simulator) in our
toolset. We also plan to use other methods for veri-
fying SCR requirements speci�cations, including sym-
bolic model checking using binary decision diagrams
and mechanical theorem proving.

Acknowledgements

We thank Myla Archer and Ralph Je�ords for many
helpful discussions on verifying SCR speci�cations and
for their comments on this paper. We also thank Todd
Grimm and Bruce Labaw for implementing our veri�-
cation techniques into the toolset.

References

[AD90] R. Alur and D. Dill. \Automata for mod-
eling real-time systems". In Proc. 17th

ICALP, LNCS 736, 1990.

[AF+92] T. Alspaugh, S. Faulk, K. Britton,
R. Parker, D. Parnas, and J. Shore. Software
Requirements for the A-7E Aircraft. Tech-
nical Report NRL-9194, NRL, Wash. DC,
1992.

[AG93] J. M. Atlee and J. Gannon. \State-Based
Model Checking of Event-Driven System Re-
quirements". IEEE Transactions on Soft-

ware Engineering, pp 22{40, January 1993.

[BH96] R. Bharadwaj and C. L. Heitmeyer. \Ap-
plying the SCR Requirements Speci�ca-
tion Method to Practical Systems: A Case
Study". Proceedings, Twenty-First Annual

Software Engineering Workshop, Greenbelt,
MD, December 1996.

[But96] Ricky W. Butler. An Introduction to Re-

quirements Capture Using PVS: Speci�ca-

tion of a Simple Autopilot. NASA Technical
Memorandum 110255. NASA Langley Re-
search Center, Hampton VA 23681.

[CES86] E. M. Clarke, E. A. Emerson and
A. P. Sistla. \Automatic Veri�cation of
Finite-State Concurrent Systems using Tem-
poral Logic Speci�cations". ACM Transac-

tions on Programming Languages and Sys-

tems 8(2):244{263, 1986.

[CM88] K. M. Chandy and J. Misra. Parallel Pro-

gram Design { A Foundation. Addison-
Wesley, 1988.

[CP93] P.-J. Courtois and D. L. Parnas. \Documen-
tation for safety critical software". In Proc.

15th Int'l Conf. on Software Engg., Balti-
more, 1993.

[Dij76] E. W. Dijkstra. A Discipline of Program-

ming. Prentice-Hall, Englewood Cli�s, N.J.,
1976

[Flo67] R. W. Floyd. \Assigning meanings to pro-
grams". Proc. Amer. Math. Soc. Symposia

in Applied Mathematics, Volume 19, pp.19{
31.

[God90] P. Godefroid. \Using partial orders to im-
prove automatic veri�cation methods". In
Proceedings of the 2nd International Work-

shop on Computer-Aided Veri�cation, pages
176{185. LNCS 513, 1990.

[Hen80] K. L. Heninger. \Specifying software re-
quirements for complex systems: New tech-
niques and their applications". IEEE Trans-

actions on Software Engineering SE-6(1),
Jan 1980.

[H+95] Constance Heitmeyer, et al. \SCR*: A
toolset for specifying and analyzing require-
ments". In Proc., 10th Annual Conference

on Computer Assurance, Gaithersburg MD,
June 1995.

[HJL96a] C. L. Heitmeyer, R. D. Je�ords, and B. G.
Labaw. \Automated Consistency Check-
ing of Requirements Speci�cations". ACM

Trans. on Software Engg. and Methodology,
5(3)231{261, July 1996.

[HJL96b] C. L. Heitmeyer, R. D. Je�ords, and B. G.
Labaw. Tools for Analyzing SCR-style Re-

quirements Speci�cations: A Formal Foun-

dation. Technical Report NRL-7499, NRL,
Wash. DC, 1996. In preparation.

[HLK95] Constance Heitmeyer, Bruce Labaw, and
Daniel Kiskis. \Consistency checking of

SCR-style requirements speci�cations". In
Proc., 1995 Int'l Symposium on Require-

ments Engg., York, England, March 1995.

[HM83] C. L. Heitmeyer and J. McLean. \Abstract
requirements speci�cations: A new approach
and its application". IEEE Transactions on

Software Engineering, SE-9(5), Sep 1983.

[Hol91] G. J. Holzmann. Design and Validation of

Computer Protocols. Prentice-Hall, 1991.

[HP94] G. J. Holzmann and D. Peled. \An im-
provement in formal veri�cation". In Proc.

FORTE94, October 1994.

[Kur89] R. P. Kurshan. Analysis of Discrete Event

Coordination. Lecture Notes in Computer
Science 430, pp. 414{453.

[McM93] K. L. McMillan. Symbolic Model Checking.
Kluwer Academic Publishers, 1993.

[MP91a] Z. Manna and A. Pnueli. \Completing the
Temporal Picture". Theoretical Computer
Science, 83(1):97{130, 1991.

[MP91b] Z. Manna and A. Pnueli. The Temporal

Logic of Reactive and Concurrent Systems.
Springer Verlag, 1991.

[Lyn94] N. Lynch. \ Simulation techniques for prov-
ing properties of real-time systems". In REX
Workshop '93, LNCS 803 pp. 375{424, 1994.

[ORS92] Sam Owre, John Rushby, and Natarajan
Shankar. \PVS: A prototype veri�cation
system". In 11th International Conference

on Automated Deduction, LNCS-607, 1992.

[PM95] D. L. Parnas and J. Madey. \Functional
documents for computer systems". Science

of Computer Programming, 25(1), pp 41{62,
Oct 1995.

[SA96] T. Sreemani and J. M. Atlee. \Feasibility of
Model Checking Software Requirements". In
Proc., 11th Annual Conference on Computer

Assurance, Gaithersburg MD, June 1996.

[Val90] A. Valmari. \A stubborn attack on state
explosion". In Proceedings of the 2nd Inter-

national Workshop on Computer-Aided Ver-

i�cation, pages 156{165. LNCS 513, 1990.

A Promela code for safety injection

/* This file contains the PROMELA/spin version of an SCRTool specification. */

/* It is created by SCRTool and automatically fed to Xspin. */

/* However, this file was left in the file sis.spin */

/* for you to use, look at, etc. */

/*****************************/

/* numeric constants */

/*****************************/

bool TRUE = 1;

bool FALSE = 0;

#define TooLow 0

#define Permitted 1

#define High 2

#define On 0

#define Off 1

#define Low 900

#define Permit 1000

/*********************************/

/* variable declarations */

/*********************************/

byte Block = Off;

byte BlockP = Off;

bool Overridden = FALSE;

bool OverriddenP = FALSE;

byte Reset = On;

byte ResetP = On;

byte SafetyInjection = On;

byte SafetyInjectionP = On;

int WaterPres = 14;

int WaterPresP = 14;

byte Pressure = TooLow;

byte PressureP = TooLow;

/***********************/

/* init function */

/***********************/

init {

/******************************/

/* main processing loop */

/******************************/

do

::

/*********************************/

/* specification asserts */

/*********************************/

/* (Reset = On AND Pressure = TooLow) => SafetyInjection = On */

assert((!((Reset == On) && (Pressure == TooLow))) || (SafetyInjection == On));

/**/

/* simulation of monitored variable changes; do one each pass */

/**/

if

::if

/* randomly select any value except the current one */

:: (Block != On) -> BlockP = On ;

:: (Block != Off) -> BlockP = Off ;

fi

::if

/* randomly select any value except the current one */

:: (Reset != On) -> ResetP = On ;

:: (Reset != Off) -> ResetP = Off ;

fi

::if

/* randomly jump to any value within the legal range of the variable */

:: ((WaterPres + 1) <= 2000) -> WaterPresP = WaterPres + 1 ;

:: ((WaterPres - 1) >= 0) -> WaterPresP = WaterPres - 1 ;

:: ((WaterPres + 2) <= 2000) -> WaterPresP = WaterPres + 2 ;

:: ((WaterPres - 2) >= 0) -> WaterPresP = WaterPres - 2 ;

:: ((WaterPres + 3) <= 2000) -> WaterPresP = WaterPres + 3 ;

:: ((WaterPres - 3) >= 0) -> WaterPresP = WaterPres - 3 ;

:: ((WaterPres + 4) <= 2000) -> WaterPresP = WaterPres + 4 ;

:: ((WaterPres - 4) >= 0) -> WaterPresP = WaterPres - 4 ;

:: ((WaterPres + 5) <= 2000) -> WaterPresP = WaterPres + 5 ;

:: ((WaterPres - 5) >= 0) -> WaterPresP = WaterPres - 5 ;

:: ((WaterPres + 6) <= 2000) -> WaterPresP = WaterPres + 6 ;

:: ((WaterPres - 6) >= 0) -> WaterPresP = WaterPres - 6 ;

:: ((WaterPres + 7) <= 2000) -> WaterPresP = WaterPres + 7 ;

:: ((WaterPres - 7) >= 0) -> WaterPresP = WaterPres - 7 ;

:: ((WaterPres + 8) <= 2000) -> WaterPresP = WaterPres + 8 ;

:: ((WaterPres - 8) >= 0) -> WaterPresP = WaterPres - 8 ;

:: ((WaterPres + 9) <= 2000) -> WaterPresP = WaterPres + 9 ;

:: ((WaterPres - 9) >= 0) -> WaterPresP = WaterPres - 9 ;

:: ((WaterPres + 10) <= 2000) -> WaterPresP = WaterPres + 10 ;

:: ((WaterPres - 10) >= 0) -> WaterPresP = WaterPres - 10 ;

fi

fi;

/***/

/* executions of the functions in dependency order */

/***/

/* the PROMELA version of the Pressure function */

d_step{

if

/* modes: TooLow */

/* event: @T(WaterPres >= Low) */

:: (((!(WaterPres > Low)) && ((Pressure == TooLow) &&

(!(WaterPres == Low)))) && (WaterPresP > Low))

|| (((!(WaterPres == Low)) && ((Pressure == TooLow) &&

(!(WaterPres > Low)))) && (WaterPresP == Low))

-> PressureP = Permitted;

/* modes: Permitted */

/* event: @T(WaterPres < Low) */

:: (((!(WaterPres < Low)) && (Pressure == Permitted)) && (WaterPresP < Low))

-> PressureP = TooLow;

/* modes: Permitted */

/* event: @T(WaterPres >= Permit) */

:: (((!(WaterPres > Permit)) && ((Pressure == Permitted) &&

(!(WaterPres == Permit)))) && (WaterPresP > Permit))

|| (((!(WaterPres == Permit)) && ((Pressure == Permitted) &&

(!(WaterPres > Permit)))) && (WaterPresP == Permit))

-> PressureP = High;

/* modes: High */

/* event: @T(WaterPres < Permit) */

:: (((!(WaterPres < Permit)) && (Pressure == High)) && (WaterPresP < Permit))

-> PressureP = Permitted;

:: else skip;

fi;

/* the PROMELA version of the Overridden function */

if

/* modes: TooLow, Permitted */

/* event: @T(Block = On) WHEN Reset = Off */

:: (((!(Block == On)) && (((Pressure == TooLow) ||

(Pressure == Permitted)) && (Reset == Off))) && (BlockP == On))

-> OverriddenP = TRUE;

/* modes: High */

/* event: @T(Inmode) */

:: ((!(Pressure == High)) && (PressureP == High)) -> OverriddenP = FALSE;

/* modes: TooLow, Permitted */

/* event: @T(Inmode) OR @T(Reset = On) */

:: ((!((Pressure == TooLow) || (Pressure == Permitted))) &&

((PressureP == TooLow) || (PressureP == Permitted)))

|| (((!(Reset == On)) && ((Pressure == TooLow) ||

(Pressure == Permitted))) && (ResetP == On)) -> OverriddenP = FALSE;

:: else skip;

fi;

/* the PROMELA version of the SafetyInjection function */

if

/* modes: High, Permitted */

/* condition: TRUE */

:: ((PressureP == High) || (PressureP == Permitted)) -> SafetyInjectionP = Off;

/* modes: TooLow */

/* condition: Overridden */

:: ((PressureP == TooLow) && OverriddenP) -> SafetyInjectionP = Off;

/* modes: TooLow */

/* condition: Not Overridden */

:: ((PressureP == TooLow) && (!OverriddenP)) -> SafetyInjectionP = On;

fi;

/***/

/* update each variable and mode class for this state change */

/***/

Block = BlockP; Overridden = OverriddenP;

Reset = ResetP; SafetyInjection = SafetyInjectionP;

WaterPres = WaterPresP; Pressure = PressureP;

}

od /* end of main processing loop */

}

